Some command-line survival skills

If you are not familiar with shell environment, you could start with finding where you are by type command pwd in the terminal window. You can also open the graphic file system by type open . (for mac) and xdg-open . (for linux) in the terminal. If you want to change to another location, try to play with terminal using commands from the following list. Tip: cd

Some useful commands to get you started.

Manipulate files and directories


Some exercise on R functions

rm(list = ls()) # clean up workspace first
sessionInfo()
## R version 4.3.0 (2023-04-21)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Ventura 13.5.1
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: America/Chicago
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] digest_0.6.31   R6_2.5.1        fastmap_1.1.1   xfun_0.39      
##  [5] cachem_1.0.8    knitr_1.42      htmltools_0.5.5 rmarkdown_2.21 
##  [9] cli_3.6.1       sass_0.4.6      jquerylib_0.1.4 compiler_4.3.0 
## [13] rstudioapi_0.14 tools_4.3.0     evaluate_0.20   bslib_0.4.2    
## [17] yaml_2.3.7      rlang_1.1.1     jsonlite_1.8.4

Normal equations

Now let’s implement the Normal equations from scratch. \(\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y\).

my.normal.equations <- function(X, Y) {
  if (!is.vector(Y)) {
    stop("Y is not a vector!")
  }
  
  if (!is.matrix(X)) {  # force X to be a matrix for now
    stop("X is not a matrix!")
  }
  
  if (dim(X)[1] != length(Y)) {
    stop("Dimension mismatch between X and Y!")
  }
  
  return() # finish the calculation for beta
}

set.seed(7360)
sample.size <- 100
num.col <- 2
X <- matrix(rnorm(sample.size * num.col), nrow = sample.size, ncol = num.col)
X <- cbind(1, X)
Y <- rnorm(sample.size)

system.time(result.lm <- lm(Y ~ X[, 2] + X[, 3]))
summary(result.lm)

system.time(result.my.normal.equations <- my.normal.equations(X, Y))
result.my.normal.equations

Does your result match the estimated coefficients from the lm() function?